Broadband light bending with plasmonic nanoantennas.
نویسندگان
چکیده
The precise manipulation of a propagating wave using phase control is a fundamental building block of optical systems. The wavefront of a light beam propagating across an interface can be modified arbitrarily by introducing abrupt phase changes. We experimentally demonstrated unparalleled wavefront control in a broadband optical wavelength range from 1.0 to 1.9 micrometers. This is accomplished by using an extremely thin plasmonic layer (~λ/50) consisting of an optical nanoantenna array that provides subwavelength phase manipulation on light propagating across the interface. Anomalous light-bending phenomena, including negative angles of refraction and reflection, are observed in the operational wavelength range.
منابع مشابه
Multiple-wavelength plasmonic nanoantennas.
We propose a type of photonic-plasmonic antennas capable of focusing light into subwavelength focal point(s) at several wavelengths, which are formed by embedding conventional dimer gap or bow-tie nanoantennas into multiple-periodic gratings. Fano-type coupling between localized surface plasmon resonances of dimer antennas and photonic modes in the gratings adds new functionalities, including m...
متن کاملEnhanced emission and light control with tapered plasmonic nanoantennas
Related Articles High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor Appl. Phys. Lett. 100, 013506 (2012) Ultra-thin plasmonic optical vortex plate based on phase discontinuities Appl. Phys. Lett. 100, 013101 (2012) A thin film broadband absorber based on multi-sized nanoantennas Appl. Phys. Lett....
متن کاملBroadband scattering by tapered nanoantennas
1 Introduction Plasmonic nanoantennas have become a subject of considerable interest [1–3]. Numerous intriguing applications of nanoantennas in areas as diverse as optical and quantum communication, nonlinear optics, sensing, and photovoltaics have been discussed [3]. Ar-rayed nanoantennas like Yagi–Uda architectures down-scaled to nanometer dimensions are particularly suited for such applicati...
متن کاملBroadband plasmonic nanoantenna with an adjustable spectral response.
Six-particle and eight-particle common-gap plasmonic nanoantennas are utilized to obtain a broadband spectral response when illuminated with circular and elliptical polarization. Due to the insensitivity of dipole antennas to circular polarization, the resonant structures are brought together around the common-gap to expand the spectrum of the whole system. Their ability to focus light at diffe...
متن کاملDemonstration of scattering suppression in retardation-based plasmonic nanoantennas.
Modifications in scattering strength of and local field enhancement by retardation-based plasmonic nanoantennas when being transformed from straight nanorods to split-ring resonators are investigated experimentally. Scattering properties are characterized with linear reflection and extinction spectroscopy of nanoantenna arrays, whereas local field enhancements are evaluated for individual nanoa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 335 6067 شماره
صفحات -
تاریخ انتشار 2012